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1. INTRODUCTION

The pre-iteration formulae of Meinardus (7) (see also [8, p. 121)) relate to
certain functions f (f continuous on 1:= [-1, 1)) and to n + 2 points xk,f
which serve as an initial reference for the Remez algorithm in the Chebyshev
approximation by polynomials of degree n. We shall choose in the following
n + 2 points

which are situated very close to the points Xk,t obtained by the pre-iteration
formulae, and under certain assumptions we determine an asymptotic
expression for the values Ln.rU) of the linear functionals Ln,f that satisfy

n+1

Ln,Ag) = L ak.tg(~k,f)
k=O

for g continuous on I,

IILn,f11 = 1,

Ln,f(p) = 0 for every polynomial p of degree ",n.

(1 )

Under stronger hypotheses we can also show that Ln,t(f) is greater in
modulus than

L n(I) := n ~ 1 [tI (_I)k f (cos n~ 1 ) ++«_1)n + 1 f(-1) +f(1 »l
* Theorem 1 of this article is contained in the author's doctoral dissertation [5] written at

the University of Erlangen under the direction of Prof. Dr. G. Meinardus.
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This means that in these cases ILn,f(f)1 is a better lower bound for the
minimum deviation

En(f) = min{llf -Pnllco: Pn polynomial of degree ~n}

with respect to the norm

II gllco = max Ig(t)1
tEl

(cf. Meinardus [8], p.4).
Then we consider the polynomials Pn.f and Pn,f of minimal maximum

deviation from f in the points ¢k,f (k = 0, 1,..., n + I) or
¢k := -cos(kn/(n + I)) (k = 0, 1,..., n + 1), respectively, and under fairly
restrictive assumptions we prove

Ilf- Pn,fllco <Ilf- Pn.fllco·

2. PRE-ITERATION FORMULAE

We consider a three times continuously differentiable function f on I with
the development

(2)

with respect to Chebyshev polynomials of the first kind; if we truncate this
development at n + m + 1 with an mE {1, 2,..., 2n + 1} and put

then we have (see, e,g., Hornecker [6])

m

e: :=f* - Pn.f* = cn+! Tn+! + L cn+I+j(Tn+! +j - T1n+ I-jl)'
j= !

By a change of variables we obtain the equations

m

- 2 L cn+l+jsin(j~) sin[(n + 1)~],
j=!

(
kn ) 2 k k ~ • jkn

e~ -- =-(n+ 1) cn+1(-I) -4(n+ 1)(-1) L.,Jcn+1+jcos--
I

,
n + 1 j= 1 n +
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Applying one step of the Newton iteration in order to determine the extrema
of en (starting with ()k := kn/(n + 1» and simplifying the denominator under
the condition Cn + 1 =1= °we obtain

(k=O, 1,... ,n + 1).

Transforming back we get, in the simplest case of m = 1, the points

;:._ (() 2 Cn +2 sin ()n + 1 - k )
'ok,f'-COS n+l-k-

cn+ 1 n+ 1

_ ;: 2 Cn+2 1 - ~~
-'ok+ -----

cn +1 n + 1

_ 2 1 - ~Z (Cn +2 ) 2
(n + 1)2 C

n
+

1
COS(()n+l-k +17n+l-k)'

where 17 n+ l-k lies between °and

-2 cn+2 sin ()n+ l-k .
Cn + 1 n + 1

If we carry out one step of the Newton iteration in order to determine the
extrema of e:, we obtain in the same way as above the reference points

x*(m) _ ~ + 2(1 - ~D L}:l Cn+l+jUj-l(~k)
k,f - k (n+l)Cn+l+Lr=lCn+l+i(4iTi(ek)-2ekUi-l(~k»

(k = 0,1,..., n + 1), (3)

where Uj denotes the Chebyshev polynomial of second kind and degree j.
This is the general case of a pre-iteration formula of Meinardus [7; 8, p.
121]. In our theoretical investigations we consider only the approximate
values

(3a)

which in the case m = 1 lie very close to the points ek,f as we have seen
above.
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3. BETTER LOWER BOUNDS.

173

As usual we denote by Ii the Bessel function of order j (and of imaginary
argument), Le.,

00 (Z/2)2k+i
I/z)= L

k=O k! (k + j)! .

Then we have

THEOREM 1. Let f with the development (2) and Cn+ 1 "* °be given, and
let Pn := 2(cn+2/Cn+ I) *- 0.

(i) If with some y E ]0, 1[

for all natural numbers j (4 )

holds, then

L If) = Cn+1 - LJ:~IOgn/log Y] Cn+I+/(-pnY/jl) +Cn+1y20(I/n)
n,1\ Io(Pn)

X (1 + O(yn
) +p~ O(l/n)).

(ii) If (4) holds and ijY=IPnl/2, where y~0.59=:yo' then for
sufficiently large n we have

Remarks. (1) Statement (ii) means that in replacing the reference points

~O, ~I , ... , ~n+ 1

by the reference points

we achieve an "ascent" of the corresponding functionals from Ln(f) to
Ln,Aj), just as if we had carried out one step of the Remez algorithm
exactly, This result also holds for the points

e
lm) f}(m) elm)cos O,J' cos Uj,J , ... , cos n + 1,J

with m = 2 or m = 3 instead of the points ~k,f (k = 0, 1,..., n + 1), if we again
assume (4), y = IPnl/2 and (more restrictively than in the theorem) y~ 0.23
for m = 2, y~ 0.26 for m = 3 (see [5]).
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(2) Condition (4) alone is satisfied for an infinite sequence of natural
numbers n, if, e.g., f is holomorphic in an ellipse with foci -1 and +1 and a
sum of half axes that is greater than y- I.

Proof of the theorem. In order to determine the "weights" alr,J of Ln,J we
examine first

n+1
ak,f:= n (C;k,j- C;j,J)'

j=o
Uk

Now by Taylor's formula

2

C;k.f= C;k + n~ 1 (l-c;D- 2(n~ If c;k(I-c;D

+ cOS(On+l_k + ifn+l-k) (1- ;<2)2 4

24(n + 1)4 'ok Pn

holds with some ifn+l-k between 0 and -Pn(sin 0n+I_J(n + 1». So we have

where the (Jj,k.n have bounds not depending on j, k or n. Therefore we have
for n ~ 5 (see, e.g., Meinardus [8, p. 32])

n+l[ (P )ak,f=}] (C;k-C;j) I- n ;I(C;k+C;j)

j*k

XC (n+ I)' (IP~~«'H/»))]
n+l( PnC;k Pn in )

= Yi (c;k-c;J [\ 1--;+T--;+Tcos-;+T (1 +p~O (~))
~=o (1 _2PnC;k) n
Hk n+I
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1+P~O (+)
x----

1 _ 2Pnek

n + 1

n+1
= n (ek-ej)2-n-1

j=O
U,k

[
)< J 2)< 2)<2 2] n + 1 (1 Pn'ok 1 Pn'ok + Pn'ok Pn

- -n+T- -n+T (n + 1)2 - (n + 1)2

(
2p~ e~ P~) 1/2 1 + 20 ( 1 )

(n+ 1)2 - (n+ 1)2 Pn 11
X 1+ ~1_ 2Pnek (1 _2pnek )

n+l n+l
n+1

= n (ek-ej)2-n-1
j=O
j*k

X!2
n
+

1 (1- :~ekl +p~O (~2) f+1 - [p~O (~2) r+1(

X(1 - :~e; +p~0C2))-I (1 +p~0(+) )

= fi (ek-ej)e-pn'k(l +p~O (~)) (1- Pnek )-1
J=O n n + 1
j*k

The last equality is a consequence of
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Now we determine
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(k = 1,..., n)

n+1

Y Iii I-I
"'--i k,f

k-O ( P) ( P)ePn 1 n +e- Pn 1+ n

= [+ e
Pnlk (1 _Pnek ) + - -;+T -;+T ]:-:1 n + 1 n + 1 2n + 2

X(1 +0(:~) )

=+{' ePn
cos ~ (1 - n~ 1 cos ¢) d¢ (1 + O(yn)) ( 1 +p~ 0 (+) )

= (Io(Pn) + n~ 1 II(-Pn»)(l + O(yn)+p~O (+))
= Io(Pn) (1 + O(y") +p~0(-;-)).

Then we have

In order to determine the en(ek,f) we introduce the notations

[) ._ _ sin Ok
k'- Pn n + 1

and

K:= r2 _ log n ],
log y
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where [a] denotes the integer part of the real number a. For j = 1,..., K,

177

cos[(n + 1 + j)(Ok +Ok)] - cos[(n + 1 - j)(Ok + Ok)]

= -2(-I)k sin[ (n + 1) 0d sin[j(Ok +Ok)]

= -2(-I)k sin(-Pn sin (}k)

X [sinuOk) (1 -/p~O (:2)) + COSUOk)jPnO (~) ]

holds, and therefore

K

- 2 L Cn+I+j(_1)n+ I-k sin(jOn + l-k) sin(-Pn sin (}n+ l-k)
j=l

~., (1) 2 (1)+cn+IPn !-riO - +cn+1Y 0 -,
J=l n n

where the last term results from

Combining these results we have

n+1
Ln,f(f) = L ak,f(f(c.k,J) - Pn,f(C.k,J»

k=O

1 +O(yn
) +p~ 0 (~)

nlo(Pn)

X [re-lInCOSIiJCn+lcOS(-PnSin~) (l+ Pn COS~)d~(1+0(yn»
. 0 n + 1

- 2 jtlre-lInCOSIPcn+ I+j sin(-Pn sin~) si~j~ d~ (1 + O(yn»
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(
1 P~) ~ (-PnY 20 ( 1 )

en + I + 2n + 2 - j~1 Cn+ 1+ j --y- + Cn+ I Y 11
/o(Pn)

X(1 + O(yn) +P~0(~ )),
according to formulae 3.931 and 3.932 in Gradshteyn and Ryzhik [4].

Proof of ii. As a consequence of the above equation we have

1 + pf - eYIPnl + 1 +Y IPn 1- y20 (+)
ILn,f(l)I~lcn+ll /o(Pn)

X(1 +O(yn) +p~0(+)).
If we choose Yo = 0.59 and assume Iplll = 2yo' then

2 + 4y2 - e2111

(;) > 1.00485
/0 Yo

holds, i.e.,

Now

is a monotonically increasing function of y for y~ 0, and accordingly for

°< y < Yo and IPn I= 2y

2+ 4y
2 - e

2y2
( 2 (1) )ILn,Af)l ~ Icn+ II /0(2y) 1 - Y 0 11

> ILn(l)1 = Ir~o C(2r+ I)(n+ I) I
holds, if only n is sufficiently large.
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As we could see in the proof, one obtains numerous similar represen
tations of Ln,if) and corresponding estimates by slightly varying the
assumptions of the theorem.

4. REDUCTION OF THE ERROR NORM

Next we want to show, for certain functions, that the error norm decreases
in the case of discrete Chebyshev approximation in
(k = 0,1, , n + 1) (compared with approximation
(k = 0,1, , n + 1».

the points ~k,f

in the ~k

THEOREM 2. If for a function f with the development (2) and for a
sequence (nJj EN ofpositive integers

Cnj+I'*O, Cnj+2 '*0,

Icnj+I HI ~ M IYn/lcnj+ II for k = 2, 3,...

holds with some M >0, where Yn.= cn.+ 2 /Cn.+ 1 and
) ) )

lim Yn.= 0,
j-+oo }

then for nj sufficiently large we have

(5)

Remark. From the assumptions of the theorem it follows that f is an
entire function.

Proof For the sake of simplicity we put nj = n in the proof, i.e., we
consider only those degrees n, for which (5) holds. First we examine where
the extrema of en :=f- Pn,f' (within [-1, 1]) can lie and what values f - Pn,f
can take there. To this end we denote the extremum of en neighbouring ~k,f

by xt, and we put

0:+ I-k = arccos xt
and
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where en = en 0 cos. The conditions for determining et as a zero of e~ by the
Newton method, starting with Ok' are fulfilled, and we can estimate

Ix~+ I-k - ~n +l-k,J1

~ lot - 0k,fl ~ lot - 0ll) I+ lOll) - Ok - £5kI

~2Ie~(OdI2 max l,ell/(=')"I='-O(l)'~ le~(Ok) II
~ le~(OkW n ~ • ~ k ~ e~(Ok) \

+ 12Yn sin Ok
n + 1

2 LJ~i I Cn+Hi sin(j0k) + Cn+I0(1 Yn12n +2) I

We still need the estimate

2n+ I

le~'(S)1 = I-(n + 1)3 Cn+1 sin[(n + I)S]- L cn+1+v
v=1

X {en + 1 + V)3 sin[(n + 1 + v)S]- (n + 1- V)3 sin[(n + 1- v)S]f

+0(IYnI2n+2)cn+11

~ Icn+11 (n + 1)3 [Isin[(n + 1)(S - ek)]1 + O(y~)]

+ Icn+ III Yn II(n + 2)3 sin[ (n + 2)S]- n3 sin(nS)1

~ Icn+11 (n + 1)3IYnI6(1 + O(IYnl) + O(l/n»,

which holds for

Then we get

lot - 0k,J1

~ 12 4y~ Icn+116(n + 1)31Ynl (1 + O(lYnl) + O(l/n»
~ (n+ 1)2 (n+ 1)2Icn+11

2M 2 I
+ n +Y~ (1 + O(lYnl) \ Isin 0kl

~ 2My~ (1 + O(IYnl» Isin Okl.
n + 1
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(6)

We now give an asymptotic expression for en(Ok,J + fJk) with
fJk = (O(y~)j(n + 1)) sin Ok' e.g., for en(On and en(Ok,J):

en(Ok,J+ fJk)

k [ (n + 1)2.1: 2 )4.1: fJ )4)]=cn+1(-I) 1- 2 (Uk+fJk) +O«n+I (Uk+ k

2n+ I 1
-2 jJ;1 cn+1+j sin(jOk)(-I)k (Ok +fJk)(n + 1)

+ (_I)k (Ok + fJk)2 j(n + 1) COS(j0k)

- (_I)k (Jk 7!k)3 «n + I + j)3 sin [jOk + (n + 1 +j) 17k,j]

+ (n + 1-j)3 sin[jOk - (n + 1 - j) 17k» ( + O(y~n+2) Cn+I

k [ (Cn+2 )2 . 20 (n + 1)2 (2.1: fJ2) (4=cn+1(-I) 1-2 C
n
+

1
sm k- 2 ukfJk+ k +OYn)

+4(Cn+2)2 sin2Ok +fJk (-2 cn+2 sin Ok) (n + 1)2 + 0 (~)
Cn + 1 Cn + 1 n+1 n+I

2n+ I ]

+O(y~)+M jJ;2 jIYnlj+lsin20k+0(y~)

= Cn+1(-Il [1 + 2y~ sin 2 0k(1 + 0(1 Yn I»

+ O(y~) + 0 CY~I: )J
where the th,j lie betweenOk and Ok,! + fJk' Hence

follows.
Now we derive an asymptotic expression for the function Pn,J - Pn,!, and

to this end we define

640/32/3-2
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With these definitions we have (cf. Meinardus [8, p. 73])

n+l
= L cn+1(-lt+ 1

-
k

k=O

(7)

for according to Theorem 1 for sufficiently small y (in our case for n
sufficiently large) the following holds:

L n,t<f)=cn+1 (I +2y~+0(y~)+0 (~))

X (I - y~ + O(y~)) (I + 0(1 Yn n+ 0 (:~))

=cn+l(l+y~) (1+0 (~)+O(Y~))

We next determine the polynomial of degree ::;;;'n + 1 which interpolates
Tn + I (x)( 1 - 2x2

) in the points ek , i.e., in the zeroes of Un (x )(1 - x 2
), First

we have with x = cos ~

Tn+l(X) - xUn(x)

sin ~ cos[(n + I)~] - cos ~ sin[(n + I~ I
sin ~

and therefore

and furthermore

-2Un_1(x)(1 _x2
) - Tn+1(x) = - 2 sin n~ sin ~ - cos n~ cos ~

+ sin nt~ sin ~

= - Tn_1(x).
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We now introduce the function

'(x) = cos (arccos x - n
2:n I VI=?)

for which ~k.f = '(~k) holds and we estimate, as in the case of the ak,f'

Therefore we have, for x E [-I, II,

Pn,A'(x)) - Pn,fWx))

=~: Cn+ly~(_l)n+l-k(1-2~Dlk(X) (I +O(IYnl)+O(~))

= -Cn+IY~ (I + 00Ynl) + 0 (~)) Tn_l(x).

183

In order to estimate 1- Pn•f we choose a sequence (rn)nEN of positive
numbers with rn~O, I/(rn · n)~O, and Yn/rn~O, and we partition the
interval [-I, II as follows.

(a) Let x <,. -1/V2 - rn or x ~ 1/V2 +rn • Then by (6) and (7) we
have the simple estimate

I/(x) - Pn,f(x)1

<,. max{l/(x) - Pn,t<x)l: x <-1/V2- r nor x> 1/V2+rn}

+IIPn,f-Pn.tllro

<"lcn+ II [1 + 2y~(1 - ~ - 2rn/V2 - r~) +0(1 y~ I)

+ y~(1 + 0(1 Yn I) + O(1/n)) II Tn-ilirol
<"Icn+II [I + 2y~ - 4y~rn/V2+ O(IY~I) + O(y~/n) - 2y~r~1

< III- Pn,fllro, (8)

where (8) holds for all n = nj sufficiently large because of (6).
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(b) In the interval [-1/ V2 - Tn' 1/V2 + Tn] we consider first the
subintervals in which no extremum of en can lie. We observe

00

en(Ok) = (_l)k L c(2r+l)(n+I) = (_1)k cn+1(1 + O(y~n+2))
r=O

and (analogous to (6))

en(Ok + 2<5k)

=cn+1(-1l [1- (n~ 1)2 (2<5k)2+ O«n + 1)4 <5t)]

+ cn+2(-1)k [-2(n + 1) sin(Ok) 2<5k

- 2(n + 1) cos(Ok)(2<5k)2 + (2~k)3 o(n3)] + cn+1O(lY~I)

=cn+1(-1l [1 +(n+ 1)2<5Z(-2+2)+O (:~) +O(lYnI 3
)].

Hence for x between cos 0k+ 1 and COS(Ok + 2<5k) with

it follows that

1!(x)-Pn,f(x)1 ~ len(arccosx)1 + IIPn,f-PnAoo

~lcn+ll [1 +y~(l +O(IYnl)+O(1/n))]

<II!-PnAoo

if only n = nj is sufficiently large.

(c) In order to estimate !-Pn,f near those extrema which lie inside
[-1/V2 + Tn' 1/V2 - Tn], we examine cos(n - 1)~ for ~ = ()k + fJk with
IfJkl = O(IYnl/n) and

kE {[(n + 1)0 + Tn)], [(n + 1)(~ + Tn)] + 1,... , [(n + 1)(~ -Tn)]}: (9)

(_1)k cos[(n - 1)~]

=COS(2()k)cos[(n-1)fJd +sin(2()k)sin[(n-1)fJd

~ -(2nTn(2/n) - O(1/n))(1 - O(Y~)) + O(IYnl) < -3Tn. (10)
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Here (10) holds, if n = nj is sufficiently large. For x lying between cos ()k and
COS«()k + 20k ) with k as in (9) we have

sgn(cn + 1(-1t) = sgn(f(x) - Pn.ix )) = sgn(f(x) - Pn.ix ))

= sgn{-cn + I cos[ (n - 1) ,-I(X)]}

= sgn(Pn,ix ) - Pn.ix ))

and hence

I/(x) - Pn.ix)1 < [/(x) - Pn,f(x)[

if n = nj is sufficiently large; for if x lies between cos ()k and COS«()k +20k )

then ,-I(X) is situated between

(d) If at last x lies between cos ()k and COS«()k + 2c5k ) with

or

k E {[en + I)(~ -Tn}], [en + I)G -Tn)] + 1,..., [en + I)(~ + 3Tn)]}

then we have again for ¢J=()k+flk with Iflkl= O(IYnl/n)

(_I)k cos[(n - I)¢J] ~ 6nTn+ O(I/n) + O(Yn)

and hence

(_I)k (f(x) - Pn.ix))

~ cn+1(1 + y~(1 +O(Tn)) + y~(6nTn + O(I/n) +O(Yn))

< III- PnAoo,

if n = nj is sufficiently large.

5. RELATED RESULTS

(i) Under relatively weak hypotheses (see [5]) on the coefficients ck

in (2) the norm of the homogeneous mapping An that relates to a function I
the polynomial of best approximation (degree n) in the points xl":} (and of
similar mappings) is bounded by the quantity

(2/n) log(n + 1)(1 +0(1)).

(ii) A different nonlinear method in polynomial approximation studied
by the author in [5] is based on a rational approximation in the complex
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plane as given by Akhiezer [1] and applied to polynomial approximation by
Darlington [3], Binh Lam and Elliott [2], Talbot [9], and Gutknecht and
Trefethen [10]. In this method the coefficients Cn+P Cn+2 , ... , Cn+m of (2) are
used to determine, by some kind of "throwback," a polynomial Qn.m,f of
degree! n. Then under the conditions

0< cn+m~ YCn+m- 1 ~ ••• ~ ym-2cn +2~ ym-lCn +1

(with some y, 0 < y < 1), limn-->oo men) = 00, and men) = o(njlog n), the
following results hold:

(a) If there is a 0 < 1 such that for all natural numbers k

ICn+k I~ Ok - 1 len + I I
is valid then

(b) If n is large enough and all ck with k > n are nonnegative then

6. NUMERICAL EXAMPLES

The author has written a program to compute the polynomials P:,f of
minimal maximum deviation from a function I in the points Xk~jl)

(k = 0, 1,... , n + 1) as defined in (3). He computed these polynomials, which
are a slight modification of the polynomials Pn,f studied in this article, for a
number of functions I and degrees n on the CD 3300 computer of the
University of Erlangen; some results were already mentioned in [5].

We define, for g E '&' (1), the functional

n+l g(X.*(I»)
L:.tCg) = ?: nn+ 1 . (~'.~(l) - x *(1»)

J=O k=O.k*J J,f k.!

(

n+l n+l )-1
X ];0 (_l)n+l-m lJ (Xi~)1) -x:.Y»)-1

i*m

analogously to (1), so we can compare the quantities ILnlf)l, IL:,if)l,
Enlf), III- P:Aoo, and III- PnAoo as is done in Table! for the functions
et

, l/(t - 2), and (arccos t)2 for several degrees. In addition to the
asymptotic results of Theorems 1 and 2 one can see from the examples in
Table I and from counterexamples (e.g., in [5]) that the condition

(11)



TABLE I

Degree ILn(J)1 IL:,A/)I En(f) 11/-P:Aoo 111 - PnAoo

tTl
Function I(t) = e' :;l:I

:;l:I

1 2.7154032 X 10- 1 2,7880056 X 10 - I 2,7880159 X 10- 1 2.7880261 X 10- 1 2,8606285 X 10- 1 0
:;l:I

2 4.4336861 X 10- 2 4,5016943 X 10- 2 4.5017388 X 10- 2 4,5017847 X 10- 2 4.5468331 X 10- 2 c:l
0

3 5.4742404 X 10- 3 5.5283689 X 10- 3 5.528369 X 10- 3 5.5283693 X 10- 3 5.5811151 X 10- 3 c::
4 5.4292626 X 10-' 5.4666751 X 10-' 5.466675 X 10-' 5.4666762 X 10-' 5.5008784 X 10-' Z

0
5 4.4977313 X 10-' 4.5205490 X 10-' 4.52055 .. X 10-' 4.5205810 X 10- 5 4.5429276 X 10-' '"
6 3.1983973 X 10-6 3.2108692 X 10-6 3.21090 .. X 10-6 3.2109500 X 10-6 3.2229366 X 10-6

c:l
>

7 1.992821 I X 10- 7 1.9979490 X 10- 7 1.998 .... X 10- 7 2.0047999 X 10- 7 2.0052078 X 1O~7 '"tTl
0

Function I(t) = 1/(t - 2)
0
Z

2.2222222 X 10- 2 2.3932257 X 10- 2 2.3932257 X 10- 2 2.3932257 X 10- 2 2.5528196 X 10- 2 "C:I
2

~4 1.5948963 X 10- 3 1.7178220 X 10- 3 1.7182587 X 10- 3 1.7188785 X 10- 3 1.8384723 X 10- 3

6 1.1450818 X 10-' 1.2330270 X 10-' 1.2336543 X 10-' 1.2343051 X 10-' 1.3125171 X 10-'
::j
tTl

8 8.2213301 X 10-6 8.8512053 X 10-6 8.8572392 X 10-6 8.8658615 X 10-6 9.4877130 X 10- 6 :;l:I
>...;

Function 1(1) = (arccos 1)2
0
Z

2 0.54831136 0.82056792 0.83760674 0.85820157 1.1640088
4 0.19739209 0.38149991 0.43412763 0.50178355 0.70730172
6 0.10071025 0.22186020 0.29158234 0.38035135 0.51152046

8 0.060923484 0.14519486 0.21927002 0.31198496 0.40124866

......
00
-J
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is essential for the fact that the points xk;]1) yield a better approximation
than the "Chebyshev nodes" ~k' On the other hand, given (11), the
"regularity" properties of J (e.g., differentiability, holomorphy) determine
how much IL:,AJ)I and IIJ-Pn.tlloo deviate from En(J). So in the case of
functions that are neither even nor odd one should use as an initial reference
for the Remez algorithm the points xk;] I) if len +21 < len +,I and the points ~k

otherwise. In many examples (see Table I and also Meinardus (7)) the quan
tities IIJ-P:.tlloo and En(J) agree so well that no step of the Remez
iteration is needed. In the case of even or odd functions (which could be
treated analogously in theory and computation) one should choose the points
x /':]2) if len + 31 < len +,I and the points ~k otherwise.
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